普通视图
Received before yesterday
import pandas as pd# 读取Excel文件file_path = 'D:/1.xlsx' # 替换为你的文件路径sheet_name = '1' # 替换为你的工作表名称table_name = 'your_table_name' # 替换为你的数据库表名称# 使用pandas读取Excel数据df = pd.read_excel(file_path, sheet_name=sheet_name)# 获取表的列名columns = ', '.join(df.columns)# 将每行数据转换为SQL INSERT语句insert_statements = []for index, row in df.iterrows(): # 将每行数据转换为元组格式 values = ', '.join([f"'{str(value)}'" for value in row.values]) sql = f"INSERT INTO {table_name} ({columns}) VALUES ({values});" insert_statements.append(sql)# 输出SQL INSERT语句for statement in insert_statements: print(statement)
- 首先Linux上面要安装一些软件包
yum install -y libjpeg-develyum install -y zlib-develyum install -y libjpeg libtiff freetype
- 其次需要安装python的依赖
pip3 install tinifypip3 install Pillow
- 编写并运行以下代码
import osfrom PIL import Imageimport tinifyfrom concurrent.futures import ThreadPoolExecutor# 配置部分input_folder = '/img' # 要压缩的图片文件夹whitelist = {'example1.jpg', 'important_image.png'} # 白名单中的文件quality = 75 # 压缩质量def compress_image(img_path, quality): """ 压缩单张图片并覆盖原文件。 :param img_path: 图片路径 :param quality: 压缩质量 """ try: img = Image.open(img_path) img.save(img_path, optimize=True, quality=quality) print(f"Compressed and saved in place: {img_path}") except Exception as e: print(f"Failed to compress {img_path}: {e}")def compress_images_in_place(input_folder, whitelist=None, quality=75): """ 使用 Pillow 压缩图片并覆盖原文件,支持白名单功能。使用多线程加速处理。 :param input_folder: 原始图片文件夹路径 :param whitelist: 白名单列表,包含不希望被压缩的图片文件名(可选) :param quality: 压缩质量,默认75 """ if whitelist is None: whitelist = set() # 创建一个 ThreadPoolExecutor 来处理压缩任务 with ThreadPoolExecutor() as executor: futures = [] for root, dirs, files in os.walk(input_folder): for file in files: if file in whitelist: print(f"Skipping (whitelisted): {file}") continue if file.lower().endswith(('.jpg', '.jpeg', '.png')): img_path = os.path.join(root, file) futures.append(executor.submit(compress_image, img_path, quality)) # 等待所有任务完成 for future in futures: future.result()# 调用压缩函数compress_images_in_place(input_folder, whitelist, quality)